If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-4x-182=0
a = 1; b = -4; c = -182;
Δ = b2-4ac
Δ = -42-4·1·(-182)
Δ = 744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{744}=\sqrt{4*186}=\sqrt{4}*\sqrt{186}=2\sqrt{186}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{186}}{2*1}=\frac{4-2\sqrt{186}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{186}}{2*1}=\frac{4+2\sqrt{186}}{2} $
| 7^x-40x=0 | | 0=-2v | | 15/n-8=7 | | 9x-18=-99 | | 0=-4m | | 85-2x=61 | | 4x+19=3(2x+4) | | x-27+x+x=180 | | 6n+5=45 | | 2(3x+13)=3x+15 | | 64y2+66y+2=0 | | 5=5x-7/6+7x+9/3 | | 6x=5=41 | | x+10=-28 | | -6=-j-7 | | 4(8x-34)=88 | | 36x-15=849 | | 3n-3=7 | | 36x-15=705 | | 7t=3=24 | | 6x+24=3x+48 | | -8=2w-2 | | 1/4b+5=15 | | 13y+26=16y-10 | | u/8+11.6=-1.2 | | 8b^2+4b+1=0 | | 7x-(3x+5)-8=1/28x+20)-7x+5 | | t-(1/t^2)-8=0 | | -15+15x=30 | | 21=3/7*w | | 5/6=30x | | 5/6=30xx |